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Bulk and wetting phenomena in a colloidal mixture of hard spheres and platelets
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Density functional theory is used to study binary colloidal fluids consisting of hard spheres and thin platelets
in their bulk and near a planar hard wall. This system exhibits liquid-liquid coexistence of a phase that is rich
in spheregpoor in plateletsand a phase that is poor in sphetesh in platelet$. For the mixture near a planar
hard wall, we find that the phase rich in spheres wets the wall completely upon approaching the liquid
demixing binodal from the sphere-poor phase, provided the concentration of the platelets is smaller than a
threshold value which marks a first-order wetting transition at coexistence. No layering transitions are found,
in contrast to recent studies on binary mixtures of spheres and nonadsorbing polymers or thin hard rods.
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[. INTRODUCTION ber density of the centers of mass of the platelets at a point
with an orientationw,= (6, ¢,) of the normal of the platelets

Rich bulk phase diagrams involving colloidal gas, liquid, . denoted byp(r w.) whil (r) is th nter-of-m
and solid phases are found when nonadsorbing polymers oy denoted bypy(r, wp € ps s e center-ol-mass
hard rodlike colloids are added as depletion agents to su lumber density of the spheres. The equilibrium density pro-

pensions of colloidal spher¢s,2]. The chemical potential of lles of the mhqmogeneous mixture under the_ |r_1fluence of

the polymers or rods, with which one can tune their concen-external potgntlalwe?qs(r) and Veuy(r, wp) minimize the

tration, plays a role equivalent to that of the inverse temperad'@nd potential functional

ture for a simple one-component substance characterized lgy[

a soft pair potential. Moreover, it has been shown theoreti-

cally [3,4] and by computer simulatiofi5] that entropic _| 3 i

depletion mechanisms lead to interesting wetting phenomena f & po(r) (ke THINLASP(1)] = 1} = pis+ Vexe(1)

and to a rich surface phase behavior in colloidal mixtures of

sp_heres and noninteracting polymers or rods. A wetting tran- + 1 j & dwppp(r,wp)(kBT{In[Aﬁpp(r,wp)] -1

sition and layering transitions have been found when the 4ar

mixtures are exposed to a hard wall. _
Recently the depletion potential between two hard spheres #p* Veup(r s @p)) * Fel ps ppl, @

due to the presence of hard-disk-like colloids has been invesvhere Ag, A, are the thermal de Broglie wavelengths and

tigated[6-9]. Subsequently it has been shown within a free-us, u, are the chemical potentials of the spheres and plate-

volume theory that depletion-induced phase separation in kts, respectively. The spatial integrals run over the vol¥me

colloidal sphere-platelet mixture should occur at low plateletthat is accessible to the centers of the particles add

concentrations in systems now experimentally availfh0g. :fgd0f3”d¢. The excess free energy functional is obtained

In view of the importance of such suspensions in biomediby integrating over an excess free energy density,

cine [11] and geophysic§l12] we investigate in the present

paper bl_JIk and vyetting p_henomena of sphere-platelet mix- Felpeppl = kgT f & deCID({n(f),ni(S),n(Tp),n(s”)}), 2)

tures using density functional theory. We demonstrate that A7

the geometry-based density functional theory developed for

binary mixture of hard spheres and thin rgd8-16 can be Wr:ereg:0,1|,2,3,| =1,2, ant;lr;O,l,_ZhlndEg.(Z) _t%e sg)a-
consistently extended to the problem of hard spheres mixelf2) and anguiar arguments of the weighted densjgsn;,
nTp , andn®P are suppressed in the notation. Here we use the

with a low concentration of thin hard plateletSec. I). ' M -
Moreover, we study the bulk phase diagré®ec. Il and the following decomposition of the excess free energy density
wetting of the mixture at a planar hard wall by consideringq):

the platelets as thin and noninteracting regarding their mu- d=Pp_+P (3)

tual interactiongSec. V). Our study provides a direct com- s
parison of the bulk and wetting properties of binary spherewith [17]
platelet and sphere-rod mixtures.

Ps Ppl

(NN C RN C]
ni’ny”—nNny - N
<I>S=—ngs)ln(1—n§5))+12—(ls)2

II. DENSITY FUNCTIONAL AND FUNDAMENTAL

(913 _ 2191 (9)2
MEASURE THEORY (nz”)* = 3n3"(ny”)

247(1 - n¥)?

, (4)

We consider a binary mixture of hard spheres and thin
circular platelets of radiuRs andR,, respectively. The num- and a new contribution
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n(f’) are weighted densities which involve only variables of
either species, while®? is a convolution of the sphere den-

sity with an orientation-dependent weight function, combin-
ing characteristics of both species. The weight functions of

the Rosenfeld excess free energy density read

ORs—-12)
wi(2) = F;S—RS”, (10)
O(Rs-12) wWY(2)

w(2) = Rsz 2. = (11)
WY (2) = m(Re - 2)O (R~ |2]), (12)

— (s)
FIG. 1. Geometries relevant for the determination of the weight W(ls)(z) = OR~ |2)e, -2 @ , (13

functions[Egs.(15), (16), and(19)—(21) ] for thin circular platelets 2R, AmR,

of radiusR, (a),(b) and thin rods of lengtfiL (c),(d). The angle . . L .
between the normal of a platelet and thexis is denoted byj, wheree, is the unit vector pointing along theaxis andd(z)

while the anglef, characterizes the orientation of a rod with respectiS the Heaviside step function. The integral of the Mayer
to thez axis. Only the projections of the platelets and rods on thefunction fs{(x,y,2) of the interaction potential between two

planes of the figures are shown. hard spheres is obtained through
__® @, PP +nFnfP - anfP(ng)> l2=-| dx| dyfixy.2)
Dgp=-ng” In(L-n3”) + 9 + BV s s
l - ngs 64(1 - ngs) > -
(5) = 2w swg + wiswg - wiPswg).  (14)

® is the original Rosenfeld excess free energy deffdiff ~ The Mayer function equals -1 if the spheres intersect or
for a pure hard sphere fluid-or the subtle issue of the range touch each other and is zero otherwise. The remaining

of Valldlty of the Rosenfeld functional at h|gh denSitieS, SeQNeight functions can be expressed(aee the Appendix for
Refs.[18,19.) @y, takes sphere-platelet interactions into ac-detajlg

count up to first order in the number density of the platelets

(see discussion belgwThere is no contributio, to the

excess free energ® in Eg. (4) because the low concentra- Wé”)(Z, 0p) =
tion of platelets allows us to treat them as noninteracting

particles regarding their mutual interactions. In the present

application of density functional theory we concentrate on © 7O(R, Sin 6, - |2]) w(zp)(z, 6,)
ordering effects induced by a planar hard wall such that the Wy(z, 6p) = 8sing T 8r. (16)
resulting density profile of the spheres depends on a single P P

spatial variablez in the direction normal to the wall. Hence gnq

p<(r)=p<(2) apart from possible surface freezing at high den-

6(R, sin 6, - |2))

: : (15
4Rp sin Gp

sities. Moreover, we assume invariance with respect to rota- (sp — Q@ _ IR col g — 2
tions around thez axis by an angleg,, so thatp(r,wp) W2 6p) =8OR, cos6, |Z|)\R§(?O§ b7
=py(z,6,), where 6, is the angle between the normal of a + O (R~ |2)v*P(z,6,)sin 6, 17
platelet and the axis (see Fig. 1 In this planar geometry ) ) )
the weighted densities are given by where the functlorv(Sp)(z,ap) is determined such that the
integral of the Mayer functiorig(x,y,z, ) of the interac-
N2 = pd2)*wd(2), (6)  tion potential between a hard sphere and a thin platelet is
generated through
n®(2) = pd2+wf>(2), ) o
NP(2,6) = p2, G2, 6y), ® 2 Bp) = f dXL Ay flxy 2
nP(z,6,) = pd2) WPz, ), ©) =i + wP e +wPew®,  (18)

where the asterisk+ denotes the spatial convolution: wherelg(z, 6,) is independent of the azimuthal angbg due
9(2*h(2)=[dzg(z)h(z-z) =g=h. Note thatn'”, n¥, and to rotational symmetry. Equationgl)—(18) completely
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specify the density functional theory for the system under XA (a) (b) Ax
consideration.

Before studying the binary mixture of spheres and thin
platelets in the bulk and near a hard wall it is instructive to
compare the fundamental measure theory with the one that
has been developed recently for a mixture of hard spheres
and thin rodq13-16. For thin rods of length. the weight
functions corresponding to Eq&l5)—(17) are given by

8((L/2)cos 6, —|2))

w(z.6) = 5 (19)
O((L/2)cosH, - |z
W)z, = 220862 2) (20)
4 cosé,
wy(z,6,) =0, (22)
and
W(sr)(Z, 6,) = 80(Rssin 6, — |Z|)\5'R§ sir? o0 -7 FIG. 2. lllustrations of the steric interactions of hard spheres
+O(R, - |z|)v(sr)(z, 6,)cos;, (22) with thin hard platelets and rod&) [(c)] Schematic side view of a

sphere of radiu&; and a platelet of radiuR, (rod of lengthL). The
where the functiom(sr)(z,ar) is determined such that the normal of the platelet is parallel to the axis while the rod is
integral of the Mayer functiorfs(x,y,z,®,) of the interac- oriented parallel to the axis. Only the projections of the particles

tion potential between a hard sphere and a thin rod is genef the planes of the figures are showhb). [(d)] Due to the steric
ated through interaction, the center of mass of the platétet) is excluded from

the hatched region surrounding the sphere inxheplane. Here
* * the planes of the figures are locatedzat;,. From these figures the
sz, 6) = _f dxf dy fa(x.y,z @) area Agfzi) =m(h+Ry)? [Ag(zi)=mh?+2Lh] with h=\Re-Z,
- w can be inferredsee Eq(25) Eq. (27)].
= Wg)*Wgs) + W(lr)*w(sr), (23
In order to express the integral of the sphere-platelet and
sphere-rod Mayer functiorf&€gs. (18) and(23)] in terms of

to rotational symmetry. Heré, is the angle between the rod : . i " :
. . . . . spatial convolution decompositions, additional weight func-
and thez axis (see Fig. 1L The weight functions are linked (sp (o) :
. : ) ) - tionsw'sP(z, 6,) andw'*"(z, §,) have to be introduced. These
with a geometrical representation of the particles which is . X AT . .
. . ) - weight functions contain information about both species of
given in terms of fundamental measures defined{gas

i . . the binary mixtures. We analyze the ca 0 and 6
= ) - s )
:{)divg 3 where J—ds,pt,r tr:abglsl theh spetue_st,_ a_n(ti Izw/2 in more detail. In these limits the weight functions
=0,1,2,3corresponds to the Euler characteristic, integral .o o W(Sp)(Z,HpIO):W(S')(z, 0,:w/2):8V’£_R§—22(R5
mean curvature, surface, and voluligg) of the particles. —|2]). Figure 2 displays schematic illustrations of the support
For spherest™=1, (=R, {¥=47R2 and {¥=4R%3, - Flig play pp

whereas for thin platelets the volume is very small andOf the integral of the sphere-platelet and sphere-rod Mayer

gép): 1, 5(1')): 7R,/4, and éé‘”=2wR§- In the case of thin rods funndc(t|203r;§ which can be calculated analytically from Ed$)
b(o)th the( )volume and the surface area are very small ang '
£’=1, ;”=L/4. For comparison we note that the integral — = B _
mean cufvature of a particle can be obtained from the general <2, 0p= 0) = AdDO(Re = [), (24
relation;=fdo(1/R;+1/R,)/(87), whereR; andR, are the
principle radii of curvature at the point on the surface and A2 = W(V'Rg— 2+ Rp)z, (25)
do is a surface element. The evaluation of this integral is
trivial for thin rods and is documented for thin platelets in gnd
the appendix of Ref.21].

From their side view, platelets may be regarded as rods
[see Figs. (a) and Xc)] and from their top view(in the |sr<Z, 0, =
direction of the normal to fageas two-dimensional spheres.
Therefore the functional forms of the weight functions
Wy (2), wy'(2) [Egs.(15) and (19)] andw”(2), w;(2) [Egs. As(2) = (R~ 2) + 2L\RE- 2.
(16) and (20)] are similar, while the weight functiow(zp)(z)
[Eq. (16)] takes into account the surface of the platelses  Due to the steric interaction, the center of mass of a platelet
Fig. 1(b)]. (rod) is excluded from an area in they plane of size

wherelg(z, 6,) is independent of the azimuthal angbe due

w

E) =As(20(Rs—[2), (26)

(27)
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Asdz12) [As(z12)] surrounding a sphere, whezg is the dis- -5.4

tance along the axis between the center of mass of the

platelet(rod) and the sphere. Moreover it is apparent from

the figure that the radiugR2—z> and hence the weight func-

tion wsP(z,0) [W's(z,7/2)] are characteristic of how a =

sphere looks from the viewpoint of a platelebd). <
=.

Ill. BULK PHASE DIAGRAM

Based on the density functional given by Eg$)—(18)

and as a prerequisite for our wall-liquid interface study we 0
first study the homogeneous bulk fluid with,s(r)=0 and

Vexip(r, @p)=0 in @ macroscopic volumg. In this case the

equilibrium density profiles are constafipy(r)=ps and

pp(r,w,)=pp] and the Euler-Lagrange equations resulting 0.2 |
from the stationary conditions are given B§)[ ps, ppl/ dps
=0 and dQps, ppl/ dpp=0. In the present study we restrict

our attention to platelet number densitiﬁgRgsO.Z for o
which the pure platelet fluid and also the mixture are inthe o 44 [
isotropic phase and hengpgis independent of the orientation <

of the platelets. For comparison, the isotropic-nematic phase
transition of the pure platelet fluid is first order with coexist-
ence densitiep,R3=0.46 andp,\R3=0.5 according to a

computer simulatiofi21]. The excess free energy density per 0 0 OI 05 OI 1
volume can be expressed as g
pSRS
Fex — - pyln a (28) i i i
keTV sb™ Pp J FIG. 3. (a) Bulk and surface phase diagrams of binary mixtures

of hard spheres of radiugs and thin hard platelets of radiug,
with =Rs/2 as a function of the chemical potential of the platejgjsand
the number density of the sphergs The straight dashed lines are
2 2 AAR2 2
@ _ exd - (ﬂstRp+ ZWRpRs)Ps _m Rngps) (29) tie lines illustrating liquid-liquid phase coexistendb) Phase dia-
1-7% 1-7 2(1-759?)’ gram of the same fluid in the density-density plane, whgres the

: 3 . . . number density of the platelets. (@) and (b) the solid and open
where 7,=47R p./3 is the packing fraction of the spheres gjicies denote the bulk critical point and the wetting transition

and @, is the excess free energy density of a pure harggint, respectively. Between the wetting transition point and the
sphere fluida can be considered as the free-volume fractiongritical point the sphere-rich liquid phase completely wets the inter-

i.e., the relative amount of the volunvethat is accessible to face between the hard wall and the sphere.poor ||qu|d phase_ The
the platelets. Besides providing access to inhomogeneoustted curve is the binodal as calculated without the last term in
density distributions the above geometry-based density fungarentheses on the RHS of H89) which is equivalent to the bulk
tional theory for mixtures of hard spheres and platelets offerphase diagram of a binary mixture of spheres of radyand thin

in addition a systematic approach to calculate the wétk rods of lengthL=2.07R; (see the main textIn Fig. 4 density pro-
=-kgT In @ required to insert a platelet into a solution of files near a hard wall are shown along the thermodynamic path
spheres. The expression for the free-volume fractidgm Eq.  indicated by the arrow a,/(kgT)=-5.56 in(a); in (b) this path

(29 is equivalent to the result from a recent scaled-particlevould run parallel to the dashed tie lines.

approacH 10]. For comparison we note that the correspond-
ing free-volume fraction for thin rods is given by

existing phases. The binodal for coexisting states is shown,
a ex;{ LRgps) where a sphere-rich and a platelet-poor liquid phase coexists

1- 1- (30) with a sphere-poor and a platelet-rich liquid phase. The co-
s s existence region is bounded by a lower critical point below

From the bulk grand potential function all thermodynamicwhich only a single stable phase is found. For convenience
guantities can be calculated. Equating the pressure and thee have introduced the dimensionless variaw’gs Mp
chemical potentials of both species in both phases yields thekBTIn(Ag/Rg), and dropped the star in order to avoid a
coexisting densities. clumsy notation. Figure (8) displays an alternative repre-

Figure 3a) displays the calculated phase diagram for asentation of the phase diagram in terms of the number den-
binary mixture of spheres and thin platelets for size ratiosities of both species. The figure illustrates the fractionation
Rs/R,=2 as a function of the chemical potentja}, of the  of both spheres and platelets due to the phase transition.
platelets and the number densjiy of the spheres. The tie Upon increasing the size ratio the critical point shifts to
lines are horizontal because of the equalityugfof the co-  larger densities of the spheres.
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The dotted lines in Fig. 3 represent the binodal as calcu- 0.12
lated without the term proportional ¢ in large parentheses
on the right hand sidéRHS) of Eq. (29) which is equivalent

to considering a binary mixture of spheres and thin rods of 0.08
lengthL=7R,+ 2R%/R,=2.07R as is apparent from a com- R3
parison of Eqs(29§j and(30). The phase boundaries and the PsHs
lower critical point are shifted to smaller values @f In 0.04

other words, the number density of the spheres in the sphere-
poor phase is increased by taking into account the last term
in parentheses in Eq29). This term takes into account con- 0 ' : ! : ! : L ‘
tributions from the third virial coefficient. 0 5 10 15 20

IV. BINARY SPHERE-PLATELET MIXTURE NEAR 015
A PLANAR HARD WALL : ' ' ' ' ' ' '

The density profiles of both components of the binary
mixture of hard spheres and thin platelets close to a planar
hard wall are obtained by a numerical minimization of the
grand potential functiona{l) with the excess free energy
functional given by Eq(2). We fix the chemical potentialk,
of the platelets and approach the bulk phase boundary from
the sphere-poor side. Upon decreasigghe adsorption be-
havior changes qualitatively, and it is worthwhile to distin- 0.05 : ' : : : ' :
guish the following two cases. Fqu,/(kgT)>-5.551 we 0 5 10 15 20
find that the wall is only partially wetted by the spheres. The z/(2Ry)
layer thickness of the sphere-rich phase forming close to the
wall increases continuously, but remains finite at coexist- FIG. 4. Equilibrium density profiles of hard spheres of radiys
ence. Foru,/(kgT)<-5.551 we observe complete wetting. (&) and thin hard platelets of radii,=Rs/2 (b) in contact with a
The transition to complete wetting appears to be first ordep!anar hard wall az=0 as the bulk phase boundary is approached
because th excess adsorpIBTER[5c{p(a -p(luwih * 5000 1 P ican 3 0 sow T e i

— ; P s/ \Kgl)=11. , . )
'm ;érré Sﬁigzl?}:ﬁ eahopn(?n tggpf(?aeé(r:isrtnznfhee (\:Alljé\t'tien éutr:fn Stic;i Oﬁl.zgs 25, 11.298 27, 11.298 29 corresponding,RE=0.046 719,

. . . - . .046 725, 0.046 731, 0.046 737, 0.046 74Bom left to righd
point. Figure 43) displays the sphere density profiles at where the chemical potential at bulk coexistence uig (kgT)
upl (kgT)=-5.56 signaling the growth of a thick layer of 8

. _ ~' =11.298 295 so thgiR3=0.046 744. Ina) pz<Ry)=0 and in(b)
sphere liquid at the wall. The corresponding platelet profllesp (z<0)=0; the contact values a=R, andz=0, respectively, are
are shown in Fig. ) and indicate how the platelets become o; shown on the present scales.

more depleted as the sphere-rich layer grows. Upon ap-

proaching the chemical potential of the spheres at bulk co;

existenceus/ (kgT)=11.298 295, the calculated density pro- ]Ehe ?'otted(pg:ur\;es '2 F'i'ésﬁak'dng tlnto ?tgcour;: the We|ghtf
files at the liquid-liquid interface become virtually unctionw;"(z, 8y) [Eq. (18)] leads to wetting phenomena o

indistinguishable from the ones of the free liquid-liquid in- sphere-platelet mixtures which are different from those of

terface between coexisting bulk phases, and the layer thicks_phere-rod mixtures even if the bulk phase diagrams of both

ness diverges logarithmically, as expected for the case yst_ems_ are identical. Finally,_ we note that the we_tting be_-
complete wetting in systems governed by short-range avior discussed above remains unchanged upon increasing

forces. With increasing chemical potential of the platelets e /s;ze ratio of the platelets and the sphefeg., R,
and hence increasing distance to the critical ppsee Fig. >Ry/2).
3(a)], the interface becomes sharper, i.e., it crosses over from

3
ppRp 0.1

one to the other limiting bulk value over a shorter distance. V. SUMMARY
The wavelengthh=1.76R of the oscillations of the density '
profiles close to the wall reflects the size of the spheres. We have developed a geometry-based density functional

Similar to recent studies of wetting in sphere-polymertheory for fluids consisting of hard spheres and thin platelets
[3,5] and sphere-rof4] mixtures, we have not been able to in the limit of low platelet concentration. The bulk and sur-
numerically resolve the prewetting line which should emergdace phase diagram and the density profiles near a planar
tangentially from the coexistence curve at the wetting tranhard wall are determined numerically with the following
sition. In contrast to those studies there are no layering trammain results.
sitions in the partial wetting regime for the sphere-platelet (1) Figure 1 illustrates that from their side view thin plate-
mixture. This holds also for the aforementioned toy modellets may be regarded as thin rods and from their top view as
without the last term in Eq4) which exhibits the same bulk two-dimensional spheres. On the basis of this consideration
phase diagram as the corresponding sphere-rod mixseee we have shown that the geometry-based density functional
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theory developed for binary mixture of hard spheres and thiractions within a geometry-based density functional theory
rods[13-164 can be consistently extended to the problem ofremains as a challenge.
hard spheres mixed with thin hard platelets in the limit of

Iow platelet_ conc_entration by_ introducing an additional ACKNOWLEDGMENT
weight function which characterizes the surface of a platelet.
The volume accessible to a thin platelet of radrysin the The authors thank R. Roth for useful discussions.

presence of a sphere is smaller than the corresponding one of
a thin rod of lengthL=2R;, because of the extended surface  AppeNDIX: EVALUATION OF MAYER FUNCTIONS
of the platelet(Fig. 2).
(2) The bulk phase diagram exhibits two-phase coexist- 1. Sphere-platelet Mayer function
ence between sphere-rich and sphere-poor phases which iswjithout loss of generality we take the difference vector
bounded by a lower critical point below which a single stablepetween the centers of mass of the platelet and the sphere to
phase is foundFig. 3). The phase boundaries and the critical jie in the equatorial plane:=(r cosé,r sin ¢,0). Due to ro-
point of the corresponding phase diagram for a binary mixtational symmetry, we can choose the platelet normal to be
ture of hard spheres and thin rods are shifted to smaller Vahligned parallel to the axis: 6,=/2 and ¢,=0. First, we
ues of the (_jensny of the sp_heres due to smaller intermolecyetermine the limiting distanag,,(¢) between the centers of
lar interactions between thin rods and spheres as comparggass of the platelet and the sphere for which the platelet just
with those between thin platelets and spheres. touches the outside of the sphere. As is illustrated in Fig. 5,
(3) For the mixture near a planar hard wall, a first-orderihere are two different ways in which a platelet can touch the
wetting transition by the sphere-rich phase occurs. In theyside of a sphere: when the platelet is close to the sphere it
partial wetting regime no layering transitions are found inwii touch the sphere tangentially with its fa¢€ig. 5a)]
contrast to recent studies on binary mixtures of spheres anghereas when it is sufficiently far from the surface, its rim

nonadsorbing polymers or thin hard rods. _ touches the sphelf&ig. 5(b)]. The crossover between these
We have focused on the case of noninteracting platelets gg,, regimes occurs at

regards their mutual interactions, which constitutes a mini-

mal model for nonspherical particles with nonvanishing sur-

face area. With increasing density of the platelets, interac- ¢C=arCCO< \m>

tions between platelets must be includ¢®2,23. The ‘ P
consistent treatment of these nontrivial platelet-platelet interA straightforward geometrical reasoning yields

(A1)

RS - —_
Fim() =1 [cOS@|’ ¢ € [0,¢c] U= e+ ] U [27 = e, 27], (A2)

Rlsing| + \RE-Rocos ¢, ¢ & [¢e, 7= bl U [7+ e, 2m = ]

The Mayer function of the interaction potential between ah,(r, ¢)+h_(r, ¢) counts how ofter(0,1,2 the projection of

hard sphere and a thin platelet is given by a platelet on thex-y plane intersects the surface of the
B _ B sphere.
fsr. @) = O(im(¢) = 1) An alternative representation of the Mayer function is
1 given by the spatial convolution
= §[g+(r1 ¢) + g—(r1¢) + h+(r1¢) + h—(r1¢)]1 (AS) 5
with - fsp(r,¢):f0 drlfo d¢1f0 déird
0.(n @) =OR - r*-Rox2Rpsing)  (A4) Xsin [ Ay(r =1 )By(r ) + Aolr =1 )By(r )]
and (AB)
ha(r,#) = O(Rs—r cos¢|) with
XO(R,—|rsing+ VRE-r2cog ¢|). (A5) 1
A(r)==[d(r +eR,)) + 8(r —eR,)], A7
The functiong,(r,¢)+g_(r,¢) counts the number of end 1) 2[ ( P+ p)] (A7)
points(0,1,2 of the projection of the rim of a platelet on the
x-y plane that are inside the sphere. In E45), the first 1 (R
Heaviside function is nonzero only if the plane defined by Ay(r) = Zf dl 8(r +éel), (A8)
the platelet intersects the sphere. If it does, the function Ry
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Isp(z,ap):—J dxf dy fs(X,y,2,@p)

2w e
:f d¢f dp pO(rim(¢’) = 1) (All1)
0 0

with
ZCosf,+ p Cos¢ sin §

VpP+ 7

The corresponding integral of the sphere-rod Mayer function
FIG. 5. Geometries relevant for the determination of the limitingis given by
distancer =|r|=r}in(¢) between the centers of mass of a thin plate- " "
let of radiusR, and a sphere of radiug; for which the platelet just _
P i l(z,6,) =- dx | dy f(xy,z
touches the outside of the sphere. For the evaluation of the sphere- (2, 6) Y flxy.z.0r)
platelet Mayer function the coordinate system is chosen such that )
thex axis is parallel to the normal of the platelet, Thez axis and (7 N
the y axis are parallel to the vector®,Xr and (epXr) X wp, - o dé 0 dp pO(rim(¢") —1)  (A13)
respectively, where is the interparticle vector. The axis is per-
pendicular to the plane of the figure. The projection of a sphere ofvith
radiusRg on thex-y plane is a circular area, while the projection of
@' = arcsu’[

¢ = arcco{ p} . (A12)

acircular platelet of radius}, on thex-y plane is a line segment of Zcosf; + p cOS¢p sin 6;
length R, which is oriented parallel to thg axis. Equation(A2) \J’p + 72

can be derived using,=R,cos¢ and y,=R,sin¢. The platelet ) )
touches the sphere tangentlally with its face(ah but with its im  FOr the case#,=0 and 6, =7/2 the integrals in EqsiA1l)

in (b). Only the projections of the platelets and spheres on the plan@nd(A13) can be calculated easily leading to E@)—(27).
of the figure are shown. Alternative representations are given by the spatial convolu-

tions

] . (A14)

By(r) = O(R.~ |r]) (ng) Z%=0

o

= f dz[wiP (2, W (z- z;)

—0

+W1 (Zlio)W(Sp)(Z 7;,0) +Wp)(21’0)W o(z- 7))]

= P2 +pa(2) + p3(2) (A15)
and
where e=(0,1,0 and r;=r4(sin#; cos¢q,sin b, sin ¢, - o
cos#;). The evaluation of the integrals in EqA6) is Isr(z 0r=5>=f dzl[ )<zl,2> wWP(z-z)

straightforward. We emphasize that the Mayer function
fsr, ¢) is identical to the Mayer function of the interaction -
potential between a hard sphere and a thin rod of length +W(r)<2 —>W(Sr)(2‘2115)}
L=2R, which is oriented parallel to thg axis: 6,=m/2

and ¢, =m/2 (see Ref[16] and in particular Appendix A 1 =r(2) +r,(2) (A16)
therein. However, spatial integrals of the sphere-platelet and .
sphere-rod Mayer functions agpalitatively differentas is with

discussed in Sec. Il of the main text and in the followingw{(z,0) = 27R28(2) = 8RW{”(z,0) = 2R (2,0), (A17)
section.

WY(2) = m(RE - 2)O(Rs - [2)) = 2m(Re - Ay (2)

2. Integral of sphere-platelet Mayer function - 7—;\'@\/\/5")(2, == R§ ZZW(S')<Z _) (A18)

In order to calculate the integral of the sphere-platelet

Mayer function we take the difference vector between the (r)( L

z—):%@(z):— g>(z,7—7). (A19)

centers of mass of the platelet and the sphere tor be > 4 >

=(p sin¢,p cos¢,z). Due to rotational symmetry around the

z axis, we can choose the platelet normal to be aligned in th€igure 6 displays the integrals of the sphere-platelet and
x-z plane so thaip,=0. Using Eq.(A3) the integral of the sphere-rod Mayer functionky(z, 6,=0) and Is(z, 6, =/2)
Mayer function reads together with the contributionsp,(z),p.(2),ps(z) and

011504-7
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8 T T T T m A7 >
= [arufen=3) =g+ dpp = 4R e

N 1]

< (A22)

T

o Here the weight functions are linked with a geometrical rep-

= resentation of the particles which is given in terms of funda-

el mental measures defined é\ngdz V\;\J), wherej=s,p,r la-
bels the species, andd=0,1,2,3corresponds to the Euler
characteristic, integral mean curvature, surface, and volume
of the particles. We note that the valuesRy, and B, are
independent ob), and ¢,, respectively. The second virial co-
efficients are related to the surface tension of ideal gases of
platelets and rods outside a spherical surface of raBius

8 . r . r . according to
L b 1 _(p) 2

et ® YaR)_ 1 2<Bsp— 4—WR§>:”—RE+—RP— (A23)

= ppksT  A7RS 3 4 2R

'ﬁ_ . and

< ]

= YOR) 1 47\ L

5 7 L =—< Sr——R§)=—. (A24)

] pokeT — 4mR2 3 4
06 In contrast to earlier statements in Rdi24,25 the surface

tension of an ideal gas of thin platelelspend®n the radius

R of the sphere whereas the corresponding surface tension
of an ideal gas of thin rods imdependenbf R,, despite the
fact that the sphere-platelet and sphere-rod Mayer functions
are the same apart from a different definition of the anfjle

in Egs.(A1)—(A5). The dependence of the surface tension on

: . the radius of the spherical surface is of considerable impor-
ilrri]t?j)tioTnze i?é?i‘jk%ﬁi%’&ﬁjiﬁ? ds;;d :I'zn:;piiér%fgt(éze ““fince for the so-called Helfrich expansion of the surface free

~|2)), andps(2)= TREO(R-|2)) in (a) [see Eqs(A15), (A17), and energy of arbitrarily curved surfaces in terms of powers of

(A18)]. In (b) the dashed and dotted lines represent the contribuEhe principal curvatureg26].

z/(2R)

FIG. 6. Integral of the sphere-platelet Mayer functigyz, 6,
=0)=p1(2) +p2(2) +p3(2) for size ratioR,=Ry/2 in (a) and integral
of the sphere-rod Mayer functiohy(z, 6,=/2)=r(2)+r,(z) for
size ratioL =R in (b) as obtained from Eq$A15) and(A16) (solid

; - o1 [R2_2, : Based on the discussion of the limiting casgs0 and
tionsry(2)=py(2) andry(z2)=2L+ R§—ZZ®(RS—\Z|), respectivelyfsee _ . . . .
Egs. (A16), (A18), and(A19)]. All functions are divided b;Rﬁ. 6,=/2 the meaning of the weight functions for arbritrary

values of@, and ¢, defined in Eqs(19), (16), and(19)—(21)

can easily be inferred. For example, the Heaviside step func-
r1(2),r,(2) for the size raticR,=Ry/2=L/2. The correspond- -1 in 4 P P

ing schematic illustrations of the steric interactions of the

sphere with the platelet and rod, respectively, are shown in R

Fig. 2. The ternps(2) takes into account the contribution due wP(z,6,) = ﬁ(@(Rp sin 6, - |2) (A25)
to the surface of the platelet. There is no corresponding con- P

tribution r3(z) to the integral of the sphere-rod Mayer func- characterizes the projection of the surface of a platelet on the

tion since the surface of thin rods is negligibly small. z axis for a given anglé), between the normal of the platelet
~ The second virial coefficients for the homogeneous angnd thez axis (see Fig. 1 The prefactorrR,/sin 6, ensures
isotropic bulk fluids are given by that the integrall” = fdz wP(z, 6,) yields the correct funda-

mental measure, namely, the surface area of a platelet. The
necessity for including the weight functiongsP(z, 6,) and
Bsp:f dz Lyz,6,=0) = 5OD>§<33> + §<lp>§<23) + §<2p) (15> (A20) w<3r)(;, 0,), which contain informations abobbth sp_ecies of
the binary mixture, follows from the decompositions of the
integrals of the Mayer functions in Eq6L8) and (23). The
remaining functions®P(z, 6,) and v*"(z,6,) in Eqs. (17)
A 5 5 and (22), respectively, can be determined numerically. An
:?Rg’f T°ReRy + 27RRY (A21)  apalytic expression forv(*)(z,6,) has been derived in
Appendix B2 in Ref.[16]. The integral ﬁzs):fdz wsP
X(z,0,)=Jdz W™ (z,6,) yields the surface of a sphere of
and radiusR..
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