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Density functional theory is used to study binary colloidal fluids consisting of hard spheres and thin platelets
in their bulk and near a planar hard wall. This system exhibits liquid-liquid coexistence of a phase that is rich
in spheresspoor in plateletsd and a phase that is poor in spheressrich in plateletsd. For the mixture near a planar
hard wall, we find that the phase rich in spheres wets the wall completely upon approaching the liquid
demixing binodal from the sphere-poor phase, provided the concentration of the platelets is smaller than a
threshold value which marks a first-order wetting transition at coexistence. No layering transitions are found,
in contrast to recent studies on binary mixtures of spheres and nonadsorbing polymers or thin hard rods.
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I. INTRODUCTION

Rich bulk phase diagrams involving colloidal gas, liquid,
and solid phases are found when nonadsorbing polymers or
hard rodlike colloids are added as depletion agents to sus-
pensions of colloidal spheresf1,2g. The chemical potential of
the polymers or rods, with which one can tune their concen-
tration, plays a role equivalent to that of the inverse tempera-
ture for a simple one-component substance characterized by
a soft pair potential. Moreover, it has been shown theoreti-
cally f3,4g and by computer simulationf5g that entropic
depletion mechanisms lead to interesting wetting phenomena
and to a rich surface phase behavior in colloidal mixtures of
spheres and noninteracting polymers or rods. A wetting tran-
sition and layering transitions have been found when the
mixtures are exposed to a hard wall.

Recently the depletion potential between two hard spheres
due to the presence of hard-disk-like colloids has been inves-
tigatedf6–9g. Subsequently it has been shown within a free-
volume theory that depletion-induced phase separation in a
colloidal sphere-platelet mixture should occur at low platelet
concentrations in systems now experimentally availablef10g.
In view of the importance of such suspensions in biomedi-
cine f11g and geophysicsf12g we investigate in the present
paper bulk and wetting phenomena of sphere-platelet mix-
tures using density functional theory. We demonstrate that
the geometry-based density functional theory developed for
binary mixture of hard spheres and thin rodsf13–16g can be
consistently extended to the problem of hard spheres mixed
with a low concentration of thin hard plateletssSec. IId.
Moreover, we study the bulk phase diagramsSec. IIId and the
wetting of the mixture at a planar hard wall by considering
the platelets as thin and noninteracting regarding their mu-
tual interactionssSec. IVd. Our study provides a direct com-
parison of the bulk and wetting properties of binary sphere-
platelet and sphere-rod mixtures.

II. DENSITY FUNCTIONAL AND FUNDAMENTAL
MEASURE THEORY

We consider a binary mixture of hard spheres and thin
circular platelets of radiusRs andRp, respectively. The num-

ber density of the centers of mass of the platelets at a pointr
with an orientationvp=sup,fpd of the normal of the platelets
is denoted byrpsr ,vpd while rssr d is the center-of-mass
number density of the spheres. The equilibrium density pro-
files of the inhomogeneous mixture under the influence of
external potentialsVext,ssr d and Vext,psr ,vpd minimize the
grand potential functional

Vfrs,rpg

=E d3r rssr d„kBThlnfLs
3rssr dg − 1j − ms + Vext,ssr d…

+
1

4p
E d3r dvprpsr ,vpd„kBThlnfLp

3rpsr ,vpdg − 1j

− mp + Vext,psr ,vpd… + Fexfrs,rpg, s1d

where Ls,Lp are the thermal de Broglie wavelengths and
ms,mp are the chemical potentials of the spheres and plate-
lets, respectively. The spatial integrals run over the volumeV
that is accessible to the centers of the particles andedv
=e0

pdue0
2pdf. The excess free energy functional is obtained

by integrating over an excess free energy density,

Fexfrs,rpg =
kBT

4p
E d3r dvpFshnn

ssd,ni
ssd,nt

spd,nsspdjd, s2d

wheren=0,1,2,3,i =1,2, andt=0,1,2. In Eq.s2d the spa-
tial and angular arguments of the weighted densitiesnn

ssd, ni
ssd,

nt
spd, andnsspd are suppressed in the notation. Here we use the

following decomposition of the excess free energy density
F:

F = Fs + Fsp, s3d

with f17g

Fs = − n0
ssd lns1 − n3

ssdd +
n1

ssdn2
ssd − n1

ssd ·n2
ssd

1 − n3
ssd

+
sn2

ssdd3 − 3n2
ssdsn2

ssdd2

24ps1 − n3
ssdd2 , s4d

and a new contribution
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Fsp= − n0
spd lns1 − n3

ssdd +
n1

spdnsspd + n1
ssdn2

spd

1 − n3
ssd +

pn2
spdsn2

ssdd2

64s1 − n3
ssdd2 .

s5d

Fs is the original Rosenfeld excess free energy densityf17g
for a pure hard sphere fluid.sFor the subtle issue of the range
of validity of the Rosenfeld functional at high densities, see
Refs.f18,19g.d Fsp takes sphere-platelet interactions into ac-
count up to first order in the number density of the platelets
ssee discussion belowd. There is no contributionFpp to the
excess free energyF in Eq. s4d because the low concentra-
tion of platelets allows us to treat them as noninteracting
particles regarding their mutual interactions. In the present
application of density functional theory we concentrate on
ordering effects induced by a planar hard wall such that the
resulting density profile of the spheres depends on a single
spatial variablez in the direction normal to the wall. Hence
rssr d=rsszd apart from possible surface freezing at high den-
sities. Moreover, we assume invariance with respect to rota-
tions around thez axis by an anglefp, so thatrpsr ,vpd
=rpsz,upd, whereup is the angle between the normal of a
platelet and thez axis ssee Fig. 1d. In this planar geometry
the weighted densities are given by

nn
ssdszd = rsszdpwn

ssdszd, s6d

ni
ssdszd = rsszdpwi

ssdszd, s7d

nt
spdsz,upd = rpsz,updpwt

spdsz,upd, s8d

nsspdsz,upd = rsszdpwsspdsz,upd, s9d

where the asteriskp denotes the spatial convolution:
gszdphszd=edz1gsz1dhsz−z1d;gph. Note thatnn

ssd, ni
ssd, and

nt
spd are weighted densities which involve only variables of

either species, whilensspd is a convolution of the sphere den-
sity with an orientation-dependent weight function, combin-
ing characteristics of both species. The weight functions of
the Rosenfeld excess free energy density read

w0
ssdszd =

QsRs − uzud
2Rs

, s10d

w1
ssdszd =

QsRs − uzud
2

=
w2

ssdszd
4pRs

, s11d

w3
ssdszd = psRs

2 − z2dQsRs − uzud, s12d

w1
ssdszd =

zQsRs − uzudez

2Rs
=

w2
ssdszd

4pRs
, s13d

whereez is the unit vector pointing along thez axis andQszd
is the Heaviside step function. The integral of the Mayer
function fsssx,y,zd of the interaction potential between two
hard spheres is obtained through

lssszd = −E
−`

`

dxE
−`

`

dy fsssx,y,zd

= 2sw0
ssdpw3

ssd + w1
ssdpw2

ssd − w1
ssdpw2

ssdd. s14d

The Mayer function equals −1 if the spheres intersect or
touch each other and is zero otherwise. The remaining
weight functions can be expressed asssee the Appendix for
detailsd

w0
spdsz,upd =

usRp sinup − uzud
4Rp sinup

, s15d

w1
spdsz,upd =

pQsRp sinup − uzud
8 sinup

=
w2

spdsz,upd
8Rp

, s16d

and

wsspdsz,upd = 8QsRs cosup − uzudÎRs
2 cos2 up − z2

+ QsRs − uzudvsspdsz,updsinup, s17d

where the functionvsspdsz,upd is determined such that the
integral of the Mayer functionfspsx,y,z,vpd of the interac-
tion potential between a hard sphere and a thin platelet is
generated through

lspsz,upd = −E
−`

`

dxE
−`

`

dy fspsx,y,z,vpd

= w0
spdpw3

ssd + w1
spdpwsspd + w2

spdpw1
ssd, s18d

wherelspsz,upd is independent of the azimuthal anglefp due
to rotational symmetry. Equationss1d–s18d completely

FIG. 1. Geometries relevant for the determination of the weight
functionsfEqs.s15d, s16d, ands19d–s21d g for thin circular platelets
of radius Rp sad,sbd and thin rods of lengthL scd,sdd. The angle
between the normal of a platelet and thez axis is denoted byup

while the angleur characterizes the orientation of a rod with respect
to thez axis. Only the projections of the platelets and rods on the
planes of the figures are shown.
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specify the density functional theory for the system under
consideration.

Before studying the binary mixture of spheres and thin
platelets in the bulk and near a hard wall it is instructive to
compare the fundamental measure theory with the one that
has been developed recently for a mixture of hard spheres
and thin rodsf13–16g. For thin rods of lengthL the weight
functions corresponding to Eqs.s15d–s17d are given by

w0
srdsz,urd =

d„sL/2dcosur − uzu…
2

, s19d

w1
srdsz,urd =

Q„sL/2dcosur − uzu…
4 cosur

, s20d

w2
srdsz,urd = 0, s21d

and

wssrdsz,urd = 8QsRs sinur − uzudÎRs
2 sin2 ur − z2

+ QsRs − uzudvssrdsz,urdcosur , s22d

where the functionvssrdsz,urd is determined such that the
integral of the Mayer functionfsrsx,y,z,vrd of the interac-
tion potential between a hard sphere and a thin rod is gener-
ated through

lspsz,urd = −E
−`

`

dxE
−`

`

dy fsrsx,y,z,vrd

= w0
srdpw3

ssd + w1
srdpwssrd, s23d

wherelsrsz,urd is independent of the azimuthal anglefr due
to rotational symmetry. Hereur is the angle between the rod
and thez axis ssee Fig. 1d. The weight functions are linked
with a geometrical representation of the particles which is
given in terms of fundamental measures defined aszl

s jd

=edz wl
s jd, where j =s,p,r labels the species, andl

=0,1,2,3 corresponds to the Euler characteristic, integral
mean curvature, surface, and volumef20g of the particles.
For spheresz0

ssd=1, z1
ssd=Rs, z2

ssd=4pRs
2, and z3

ssd=4pRs
3/3,

whereas for thin platelets the volume is very small and
z0

spd=1, z1
spd=pRp/4, andz2

spd=2pRp
2. In the case of thin rods

both the volume and the surface area are very small and
z0

srd=1, z1
srd=L /4. For comparison we note that the integral

mean curvature of a particle can be obtained from the general
relationz1=edss1/R1+1/R2d / s8pd, whereR1 andR2 are the
principle radii of curvature at the points on the surface and
ds is a surface element. The evaluation of this integral is
trivial for thin rods and is documented for thin platelets in
the appendix of Ref.f21g.

From their side view, platelets may be regarded as rods
fsee Figs. 1sad and 1scdg and from their top viewsin the
direction of the normal to faced as two-dimensional spheres.
Therefore the functional forms of the weight functions
w0

spdszd, w0
srdszd fEqs.s15d ands19dg andw1

spdszd, w1
srdszd fEqs.

s16d and s20dg are similar, while the weight functionw2
spdszd

fEq. s16dg takes into account the surface of the plateletsfsee
Fig. 1sbdg.

In order to express the integral of the sphere-platelet and
sphere-rod Mayer functionsfEqs.s18d and s23dg in terms of
spatial convolution decompositions, additional weight func-
tionswsspdsz,upd andwssrdsz,urd have to be introduced. These
weight functions contain information about both species of
the binary mixtures. We analyze the casesup=0 and ur
=p /2 in more detail. In these limits the weight functions
reduce to wsspdsz,up=0d=wssrdsz,ur =p /2d=8ÎRs

2−z2QsRs

− uzud. Figure 2 displays schematic illustrations of the support
of the integral of the sphere-platelet and sphere-rod Mayer
functions which can be calculated analytically from Eqs.s18d
and s23d:

lspsz,up = 0d = AspszdQsRs − uzud, s24d

Aspszd = psÎRs
2 − z2 + Rpd2, s25d

and

lsrSz,ur =
p

2
D = AsrszdQsRs − uzud, s26d

Asrszd = psRs
2 − z2d + 2LÎRs

2 − z2. s27d

Due to the steric interaction, the center of mass of a platelet
srodd is excluded from an area in thex-y plane of size

FIG. 2. Illustrations of the steric interactions of hard spheres
with thin hard platelets and rods.sad fscdg Schematic side view of a
sphere of radiusRs and a platelet of radiusRp srod of lengthLd. The
normal of the platelet is parallel to thez axis while the rod is
oriented parallel to thex axis. Only the projections of the particles
on the planes of the figures are shown.sbd fsddg Due to the steric
interaction, the center of mass of the plateletsrodd is excluded from
the hatched region surrounding the sphere in thex-y plane. Here
the planes of the figures are located atz=z12. From these figures the
area Aspsz12d=psh+Rpd2 fAsrsz12d=ph2+2Lhg with h=ÎRs

2−z12
2

can be inferredfsee Eq.s25d Eq. s27dg.
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Aspsz12d fAsrsz12dg surrounding a sphere, wherez12 is the dis-
tance along thez axis between the center of mass of the
platelet srodd and the sphere. Moreover it is apparent from
the figure that the radiusÎRs

2−z2 and hence the weight func-
tion wsspdsz,0d fwssrdsz,p /2dg are characteristic of how a
sphere looks from the viewpoint of a plateletsrodd.

III. BULK PHASE DIAGRAM

Based on the density functional given by Eqs.s1d–s18d
and as a prerequisite for our wall-liquid interface study we
first study the homogeneous bulk fluid withVext,ssr d=0 and
Vext,psr ,vpd=0 in a macroscopic volumeV. In this case the
equilibrium density profiles are constantfrssr d=rs and
rpsr ,vpd=rpg and the Euler-Lagrange equations resulting
from the stationary conditions are given by]Vfrs,rpg /]rs

=0 and]Vfrs,rpg /]rp=0. In the present study we restrict
our attention to platelet number densitiesrpRp

3ø0.2 for
which the pure platelet fluid and also the mixture are in the
isotropic phase and hencers is independent of the orientation
of the platelets. For comparison, the isotropic-nematic phase
transition of the pure platelet fluid is first order with coexist-
ence densitiesrpIRp

3=0.46 andrpNRp
3=0.5 according to a

computer simulationf21g. The excess free energy density per
volume can be expressed as

Fex

kBTV
= Fs,b − rp ln a, s28d

with

a

1 − hs
= expS−

sp2Rs
2Rp + 2pRp

2Rsdrs

1 − hs
−

p4Rs
4Rp

2rs
2

2s1 − hsd2D , s29d

wherehs=4pRs
3rs/3 is the packing fraction of the spheres

and Fs,b is the excess free energy density of a pure hard
sphere fluid.a can be considered as the free-volume fraction,
i.e., the relative amount of the volumeV that is accessible to
the platelets. Besides providing access to inhomogeneous
density distributions the above geometry-based density func-
tional theory for mixtures of hard spheres and platelets offers
in addition a systematic approach to calculate the workW
=−kBT ln a required to insert a platelet into a solution of
spheres. The expression for the free-volume fractiona in Eq.
s29d is equivalent to the result from a recent scaled-particle
approachf10g. For comparison we note that the correspond-
ing free-volume fraction for thin rods is given by

a

1 − hs
= expS−

pLRs
2rs

1 − hs
D . s30d

From the bulk grand potential function all thermodynamic
quantities can be calculated. Equating the pressure and the
chemical potentials of both species in both phases yields the
coexisting densities.

Figure 3sad displays the calculated phase diagram for a
binary mixture of spheres and thin platelets for size ratio
Rs/Rp=2 as a function of the chemical potentialmp of the
platelets and the number densityrs of the spheres. The tie
lines are horizontal because of the equality ofmp of the co-

existing phases. The binodal for coexisting states is shown,
where a sphere-rich and a platelet-poor liquid phase coexists
with a sphere-poor and a platelet-rich liquid phase. The co-
existence region is bounded by a lower critical point below
which only a single stable phase is found. For convenience
we have introduced the dimensionless variablemp

p ;mp
−kBT lnsLp

3/Rp
3d, and dropped the star in order to avoid a

clumsy notation. Figure 3sbd displays an alternative repre-
sentation of the phase diagram in terms of the number den-
sities of both species. The figure illustrates the fractionation
of both spheres and platelets due to the phase transition.
Upon increasing the size ratio the critical point shifts to
larger densities of the spheres.

FIG. 3. sad Bulk and surface phase diagrams of binary mixtures
of hard spheres of radiusRs and thin hard platelets of radiusRp

=Rs/2 as a function of the chemical potential of the plateletsmp and
the number density of the spheresrs. The straight dashed lines are
tie lines illustrating liquid-liquid phase coexistence.sbd Phase dia-
gram of the same fluid in the density-density plane, whererp is the
number density of the platelets. Insad and sbd the solid and open
circles denote the bulk critical point and the wetting transition
point, respectively. Between the wetting transition point and the
critical point the sphere-rich liquid phase completely wets the inter-
face between the hard wall and the sphere-poor liquid phase. The
dotted curve is the binodal as calculated without the last term in
parentheses on the RHS of Eq.s29d which is equivalent to the bulk
phase diagram of a binary mixture of spheres of radiusRs and thin
rods of lengthL=2.07Rs ssee the main textd. In Fig. 4 density pro-
files near a hard wall are shown along the thermodynamic path
indicated by the arrow atmp/ skBTd=−5.56 in sad; in sbd this path
would run parallel to the dashed tie lines.
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The dotted lines in Fig. 3 represent the binodal as calcu-
lated without the term proportional tors

2 in large parentheses
on the right hand sidesRHSd of Eq. s29d which is equivalent
to considering a binary mixture of spheres and thin rods of
length L=pRp+2Rp

2/Rs=2.07Rs as is apparent from a com-
parison of Eqs.s29d ands30d. The phase boundaries and the
lower critical point are shifted to smaller values ofrs. In
other words, the number density of the spheres in the sphere-
poor phase is increased by taking into account the last term
in parentheses in Eq.s29d. This term takes into account con-
tributions from the third virial coefficient.

IV. BINARY SPHERE-PLATELET MIXTURE NEAR
A PLANAR HARD WALL

The density profiles of both components of the binary
mixture of hard spheres and thin platelets close to a planar
hard wall are obtained by a numerical minimization of the
grand potential functionals1d with the excess free energy
functional given by Eq.s2d. We fix the chemical potentialmp
of the platelets and approach the bulk phase boundary from
the sphere-poor side. Upon decreasingmp the adsorption be-
havior changes qualitatively, and it is worthwhile to distin-
guish the following two cases. Formp/ skBTd.−5.551 we
find that the wall is only partially wetted by the spheres. The
layer thickness of the sphere-rich phase forming close to the
wall increases continuously, but remains finite at coexist-
ence. Formp/ skBTd,−5.551 we observe complete wetting.
The transition to complete wetting appears to be first order
because the excess adsorptionsGl =Rl

2e0
`dzfrlszd−rls`dg with

l =p,r, calculated along the coexistence curve jump to a
macroscopic value upon approaching the wetting transition
point. Figure 4sad displays the sphere density profiles at
mp/ skBTd=−5.56 signaling the growth of a thick layer of
sphere liquid at the wall. The corresponding platelet profiles
are shown in Fig. 4sbd and indicate how the platelets become
more depleted as the sphere-rich layer grows. Upon ap-
proaching the chemical potential of the spheres at bulk co-
existencems/ skBTd=11.298 295, the calculated density pro-
files at the liquid-liquid interface become virtually
indistinguishable from the ones of the free liquid-liquid in-
terface between coexisting bulk phases, and the layer thick-
ness diverges logarithmically, as expected for the case of
complete wetting in systems governed by short-ranged
forces. With increasing chemical potential of the platelets,
and hence increasing distance to the critical pointfsee Fig.
3sadg, the interface becomes sharper, i.e., it crosses over from
one to the other limiting bulk value over a shorter distance.
The wavelengthl=1.76Rs of the oscillations of the density
profiles close to the wall reflects the size of the spheres.

Similar to recent studies of wetting in sphere-polymer
f3,5g and sphere-rodf4g mixtures, we have not been able to
numerically resolve the prewetting line which should emerge
tangentially from the coexistence curve at the wetting tran-
sition. In contrast to those studies there are no layering tran-
sitions in the partial wetting regime for the sphere-platelet
mixture. This holds also for the aforementioned toy model
without the last term in Eq.s4d which exhibits the same bulk
phase diagram as the corresponding sphere-rod mixturessee

the dotted curves in Fig. 3d. Taking into account the weight
functionw2

spdsz,upd fEq. s16dg leads to wetting phenomena of
sphere-platelet mixtures which are different from those of
sphere-rod mixtures even if the bulk phase diagrams of both
systems are identical. Finally, we note that the wetting be-
havior discussed above remains unchanged upon increasing
the size ratio of the platelets and the spheresse.g., Rp
.Rs/2d.

V. SUMMARY

We have developed a geometry-based density functional
theory for fluids consisting of hard spheres and thin platelets
in the limit of low platelet concentration. The bulk and sur-
face phase diagram and the density profiles near a planar
hard wall are determined numerically with the following
main results.

s1d Figure 1 illustrates that from their side view thin plate-
lets may be regarded as thin rods and from their top view as
two-dimensional spheres. On the basis of this consideration
we have shown that the geometry-based density functional

FIG. 4. Equilibrium density profiles of hard spheres of radiusRs

sad and thin hard platelets of radiusRp=Rs/2 sbd in contact with a
planar hard wall atz=0 as the bulk phase boundary is approached
along the path indicated by the arrow in Fig. 3sad. The chemical
potentials of the spheres arems/ skBTd=11.298 21, 11.298 23,
11.298 25, 11.298 27, 11.298 29 corresponding torsRs

3=0.046 719,
0.046 725, 0.046 731, 0.046 737, 0.046 743sfrom left to rightd
where the chemical potential at bulk coexistence isms/ skBTd
=11.298 295 so thatrsRs

3=0.046 744. Insad rssz,Rsd=0 and insbd
rpsz,0d=0; the contact values atz=Rs andz=0, respectively, are
not shown on the present scales.
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theory developed for binary mixture of hard spheres and thin
rodsf13–16g can be consistently extended to the problem of
hard spheres mixed with thin hard platelets in the limit of
low platelet concentration by introducing an additional
weight function which characterizes the surface of a platelet.
The volume accessible to a thin platelet of radiusRp in the
presence of a sphere is smaller than the corresponding one of
a thin rod of lengthL=2Rp because of the extended surface
of the plateletsFig. 2d.

s2d The bulk phase diagram exhibits two-phase coexist-
ence between sphere-rich and sphere-poor phases which is
bounded by a lower critical point below which a single stable
phase is foundsFig. 3d. The phase boundaries and the critical
point of the corresponding phase diagram for a binary mix-
ture of hard spheres and thin rods are shifted to smaller val-
ues of the density of the spheres due to smaller intermolecu-
lar interactions between thin rods and spheres as compared
with those between thin platelets and spheres.

s3d For the mixture near a planar hard wall, a first-order
wetting transition by the sphere-rich phase occurs. In the
partial wetting regime no layering transitions are found in
contrast to recent studies on binary mixtures of spheres and
nonadsorbing polymers or thin hard rods.

We have focused on the case of noninteracting platelets as
regards their mutual interactions, which constitutes a mini-
mal model for nonspherical particles with nonvanishing sur-
face area. With increasing density of the platelets, interac-
tions between platelets must be includedf22,23g. The
consistent treatment of these nontrivial platelet-platelet inter-

actions within a geometry-based density functional theory
remains as a challenge.
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APPENDIX: EVALUATION OF MAYER FUNCTIONS

1. Sphere-platelet Mayer function

Without loss of generality we take the difference vector
between the centers of mass of the platelet and the sphere to
lie in the equatorial plane:r =sr cosf ,r sinf ,0d. Due to ro-
tational symmetry, we can choose the platelet normal to be
aligned parallel to thex axis: up=p /2 andfp=0. First, we
determine the limiting distancer limsfd between the centers of
mass of the platelet and the sphere for which the platelet just
touches the outside of the sphere. As is illustrated in Fig. 5,
there are two different ways in which a platelet can touch the
outside of a sphere: when the platelet is close to the sphere it
will touch the sphere tangentially with its facefFig. 5sadg
whereas when it is sufficiently far from the surface, its rim
touches the spherefFig. 5sbdg. The crossover between these
two regimes occurs at

fc = arccosS Rs

ÎRs
2 + Rp

2D . sA1d

A straightforward geometrical reasoning yields

r limsfd = 5 Rs

ucosfu
, f P f0,fcg ø fp − fc,p + fcg ø f2p − fc,2pg,

Rpusinfu + ÎRs
2 − Rp

2 cos2 f, f P ffc,p − fcg ø fp + fc,2p − fcg.
6 sA2d

The Mayer function of the interaction potential between a
hard sphere and a thin platelet is given by

− fspsr,fd = Q„r limsfd − r…

=
1

2
fg+sr,fd + g−sr,fd + h+sr,fd + h−sr,fdg, sA3d

with

g±sr,fd = QsRs
2 − r2 − Rp

2 ± 2rRp sinfd sA4d

and

h±sr,fd = QsRs − ur cosfud

3Q„Rp − ur sinf ± ÎRs
2 − r2 cos2 fu…. sA5d

The function g+sr ,fd+g−sr ,fd counts the number of end
pointss0,1,2d of the projection of the rim of a platelet on the
x-y plane that are inside the sphere. In Eq.sA5d, the first
Heaviside function is nonzero only if the plane defined by
the platelet intersects the sphere. If it does, the function

h+sr ,fd+h−sr ,fd counts how oftens0,1,2d the projection of
a platelet on thex-y plane intersects the surface of the
sphere.

An alternative representation of the Mayer function is
given by the spatial convolution

− fspsr,fd =E
0

`

dr1E
0

2p

df1E
0

p

du1r1
2

3sinu1fA1sr − r 1dB1sr 1d + A2sr − r 1dB2sr 1dg
sA6d

with

A1sr d =
1

2
fdsr + eRpd + dsr − eRpdg, sA7d

A2sr d =
1

4
E

−Rp

Rp

dl dsr + eld, sA8d
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B1sr d = QsRs − ur ud, sA9d

B2sr d = 2dsRs − ur ud
ur ·eu

ur u
, sA10d

where e=s0,1,0d and r 1=r1ssinu1 cosf1,sinu1 sinf1,
cosu1d. The evaluation of the integrals in Eq.sA6d is
straightforward. We emphasize that the Mayer function
fspsr ,fd is identical to the Mayer function of the interaction
potential between a hard sphere and a thin rod of length
L=2Rp which is oriented parallel to they axis: ur =p /2
and fr =p /2 ssee Ref.f16g and in particular Appendix A 1
thereind. However, spatial integrals of the sphere-platelet and
sphere-rod Mayer functions arequalitatively differentas is
discussed in Sec. II of the main text and in the following
section.

2. Integral of sphere-platelet Mayer function

In order to calculate the integral of the sphere-platelet
Mayer function we take the difference vector between the
centers of mass of the platelet and the sphere to ber
=sr sinf ,r cosf ,zd. Due to rotational symmetry around the
z axis, we can choose the platelet normal to be aligned in the
x-z plane so thatfp=0. Using Eq.sA3d the integral of the
Mayer function reads

lspsz,upd = −E
−`

`

dxE
−`

`

dy fspsx,y,z,vpd

=E
0

2p

dfE
0

`

dr rQ„r limsf8d − r… sA11d

with

f8 = arccosFzcosup + r cosf sinup

Îr2 + z2 G . sA12d

The corresponding integral of the sphere-rod Mayer function
is given by

lsrsz,urd = −E
−`

`

dxE
−`

`

dy fsrsx,y,z,vrd

=E
0

2p

dfE
0

`

dr rQ„r limsf8d − r… sA13d

with

f8 = arcsinFzcosur + r cosf sinur

Îr2 + z2 G . sA14d

For the casesup=0 andur =p /2 the integrals in Eqs.sA11d
andsA13d can be calculated easily leading to Eqs.s24d–s27d.
Alternative representations are given by the spatial convolu-
tions

lspsz,up = 0d

=E
−`

`

dz1fw0
spdsz1,0dw3

ssdsz− z1d

+ w1
spdsz1,0dwsspdsz− z1,0d + w2

spdsz1,0dw1
ssdsz− z1dg

= p1szd + p2szd + p3szd sA15d

and

lsrSz,ur =
p

2
D =E

−`

`

dz1Fw0
srdSz1,

p

2
Dw3

ssdsz− z1d

+ w1
srdSz1,

p

2
DwssrdSz− z1,

p

2
DG

= r1szd + r2szd sA16d

with

w2
spdsz,0d = 2pRp

2dszd = 8Rpw1
spdsz,0d = 2pRp

2w0
spdsz,0d, sA17d

w3
ssdszd = psRs

2 − z2dQsRs − uzud = 2psRs
2 − z2dw1

ssdszd

=
p

8
ÎRs

2 − z2wsspdsz,0d =
p

8
ÎRs

2 − z2wssrdSz,
p

2
D , sA18d

w1
srdSz,

p

2
D =

L

4
dszd =

L

4
w0

srdSz,
p

2
D . sA19d

Figure 6 displays the integrals of the sphere-platelet and
sphere-rod Mayer functionslspsz,up=0d and lsrsz,ur =p /2d
together with the contributionsp1szd ,p2szd ,p3szd and

FIG. 5. Geometries relevant for the determination of the limiting
distancer = ur u=r limsfd between the centers of mass of a thin plate-
let of radiusRp and a sphere of radiusRs for which the platelet just
touches the outside of the sphere. For the evaluation of the sphere-
platelet Mayer function the coordinate system is chosen such that
thex axis is parallel to the normal of the plateletvp. Thez axis and
the y axis are parallel to the vectorsvp3 r and svp3 r d3vp,
respectively, wherer is the interparticle vector. Thez axis is per-
pendicular to the plane of the figure. The projection of a sphere of
radiusRs on thex-y plane is a circular area, while the projection of
a circular platelet of radiusRp on thex-y plane is a line segment of
length 2Rp which is oriented parallel to they axis. EquationsA2d
can be derived usingxp=Rp cosf and yp=Rp sinf. The platelet
touches the sphere tangentially with its face insad, but with its rim
in sbd. Only the projections of the platelets and spheres on the plane
of the figure are shown.
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r1szd ,r2szd for the size ratioRp=Rs/2=L /2. The correspond-
ing schematic illustrations of the steric interactions of the
sphere with the platelet and rod, respectively, are shown in
Fig. 2. The termp3szd takes into account the contribution due
to the surface of the platelet. There is no corresponding con-
tribution r3szd to the integral of the sphere-rod Mayer func-
tion since the surface of thin rods is negligibly small.

The second virial coefficients for the homogeneous and
isotropic bulk fluids are given by

Bsp=E dz lspsz,up = 0d = z0
spdz3

ssd + z1
spdz2

ssd + z2
spdz1

ssd sA20d

=
4p

3
Rs

3 + p2Rs
2Rp + 2pRsRp

2 sA21d

and

Bsr =E dz lspSz,ur =
p

2
D = z0

srdz3
ssd + z1

srdz2
ssd =

4p

3
Rs

3 + pRs
2L.

sA22d

Here the weight functions are linked with a geometrical rep-
resentation of the particles which is given in terms of funda-
mental measures defined aszl

s jd=edz wl
s jd, wherej =s,p,r la-

bels the species, andl=0,1,2,3corresponds to the Euler
characteristic, integral mean curvature, surface, and volume
of the particles. We note that the values ofBsp and Bsr are
independent ofup andur, respectively. The second virial co-
efficients are related to the surface tension of ideal gases of
platelets and rods outside a spherical surface of radiusRs
according to

gid
spdsRsd
rpkBT

=
1

4pRs
2SBsp−

4p

3
Rs

3D =
pRp

4
+

Rp
2

2Rs
sA23d

and

gid
srdsRsd

rpkBT
=

1

4pRs
2SBsr −

4p

3
Rs

3D =
L

4
. sA24d

In contrast to earlier statements in Refs.f24,25g the surface
tension of an ideal gas of thin plateletsdependson the radius
Rs of the sphere whereas the corresponding surface tension
of an ideal gas of thin rods isindependentof Rs, despite the
fact that the sphere-platelet and sphere-rod Mayer functions
are the same apart from a different definition of the anglef
in Eqs.sA1d–sA5d. The dependence of the surface tension on
the radius of the spherical surface is of considerable impor-
tance for the so-called Helfrich expansion of the surface free
energy of arbitrarily curved surfaces in terms of powers of
the principal curvaturesf26g.

Based on the discussion of the limiting casesup=0 and
ur =p /2 the meaning of the weight functions for arbritrary
values ofup andur defined in Eqs.s15d, s16d, ands19d–s21d
can easily be inferred. For example, the Heaviside step func-
tion in

w2
spdsz,upd =

pRp

sinup
QsRp sinup − uzud sA25d

characterizes the projection of the surface of a platelet on the
z axis for a given angleup between the normal of the platelet
and thez axis ssee Fig. 1d. The prefactorpRp/sinup ensures
that the integralz2

spd=edz w2
spdsz,upd yields the correct funda-

mental measure, namely, the surface area of a platelet. The
necessity for including the weight functionswsspdsz,upd and
wssrdsz,urd, which contain informations aboutbothspecies of
the binary mixture, follows from the decompositions of the
integrals of the Mayer functions in Eqs.s18d and s23d. The
remaining functionsvsspdsz,upd and vssrdsz,urd in Eqs. s17d
and s22d, respectively, can be determined numerically. An
analytic expression forvssrdsz,urd has been derived in
Appendix B 2 in Ref. f16g. The integral z2

ssd=edz wsspd

3sz,upd=edz wssrdsz,urd yields the surface of a sphere of
radiusRs.

FIG. 6. Integral of the sphere-platelet Mayer functionlspsz,up

=0d=p1szd+p2szd+p3szd for size ratioRp=Rs/2 in sad and integral
of the sphere-rod Mayer functionlsrsz,ur =p /2d=r1szd+r2szd for
size ratioL=Rs in sbd as obtained from Eqs.sA15d andsA16d ssolid
linesd. The dashed, dotted, and dash-dotted lines represent the con-
tributions p1szd=psRs

2−z2dQsRs− uzud, p2szd=2pRp
ÎRs

2−z2QsRs

− uzud, andp3szd=pRp
2QsRs− uzud in sad fsee Eqs.sA15d, sA17d, and

sA18dg. In sbd the dashed and dotted lines represent the contribu-
tions r1szd=p1szd andr2szd=2LÎRs

2−z2QsRs− uzud, respectivelyfsee
Eqs.sA16d, sA18d, andsA19dg. All functions are divided byRs

2.
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